Package index
-
surveillance-package
surveillance
- surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena
-
disProg2sts()
sts2disProg()
- Convert disProg object to sts and vice versa
-
linelist2sts()
- Convert Dates of Individual Case Reports into a Time Series of Counts
-
sts()
- Class
"sts"
– surveillance time series
-
aggregate(<sts>)
- Aggregate an
"sts"
Object Over Time or Across Units
-
stsBP-class
coerce,sts,stsBP-method
- Class "stsBP" – a class inheriting from class
sts
which allows the user to store the results of back-projecting or nowcasting surveillance time series
-
stsNC-class
reportingTriangle
reportingTriangle,stsNC-method
delayCDF
delayCDF,stsNC-method
score
score,stsNC-method
predint
predint,stsNC-method
coerce,sts,stsNC-method
- Class "stsNC" – a class inheriting from class
sts
which allows the user to store the results of back-projecting surveillance time series
-
animate_nowcasts()
- Animate a Sequence of Nowcasts
-
alarms
alarms
upperbound
upperbound
control
control
epoch
epoch
observed
observed
population
population
multinomialTS
multinomialTS
neighbourhood
neighbourhood
- Generic Functions to Access
"sts"
Slots
-
`[`(<sts>)
- Subsetting
"sts"
Objects
-
animate(<sts>)
- Animated Maps and Time Series of Disease Counts or Incidence
-
autoplot.sts()
- Time-Series Plots for
"sts"
Objects Using ggplot2
-
tidy.sts()
- Convert an
"sts"
Object to a Data Frame in Long (Tidy) Format
-
plot(<sts>,<missing>)
- Plot Methods for Surveillance Time-Series Objects
-
stsplot_space()
- Map of Disease Counts/Incidence accumulated over a Given Period
-
stsplot_time()
stsplot_time1()
stsplot_alarm()
- Time-Series Plots for
"sts"
Objects
-
toLatex(<sts>)
toLatex
-Method for"sts"
Objects
-
algo.bayesLatestTimepoint()
algo.bayes()
algo.bayes1()
algo.bayes2()
algo.bayes3()
- The Bayes System
-
algo.call()
- Query Transmission to Specified Surveillance Algorithm
-
algo.cdcLatestTimepoint()
algo.cdc()
- The CDC Algorithm
-
algo.compare()
- Comparison of Specified Surveillance Systems using Quality Values
-
algo.cusum()
- CUSUM method
-
algo.farrington()
farrington()
- Surveillance for Count Time Series Using the Classic Farrington Method
-
algo.farrington.assign.weights()
- Assign weights to base counts
-
algo.farrington.fitGLM()
algo.farrington.fitGLM.fast()
algo.farrington.fitGLM.populationOffset()
- Fit Poisson GLM of the Farrington procedure for a single time point
-
algo.farrington.threshold()
- Compute prediction interval for a new observation
-
algo.glrnb()
algo.glrpois()
- Count Data Regression Charts
-
algo.hmm()
- Hidden Markov Model (HMM) method
-
algo.outbreakP()
- Semiparametric surveillance of outbreaks
-
algo.quality()
- Computation of Quality Values for a Surveillance System Result
-
algo.rkiLatestTimepoint()
algo.rki()
algo.rki1()
algo.rki2()
algo.rki3()
- The system used at the RKI
-
algo.rogerson()
- Modified CUSUM method as proposed by Rogerson and Yamada (2004)
-
algo.summary()
- Summary Table Generation for Several Disease Chains
-
print(<algoQV>)
- Print Quality Value Object
-
wrap.algo()
bayes()
rki()
cusum()
glrpois()
glrnb()
outbreakP()
- Multivariate Surveillance through independent univariate algorithms
-
boda()
- Bayesian Outbreak Detection Algorithm (BODA)
-
LRCUSUM.runlength()
- Run length computation of a CUSUM detector
-
categoricalCUSUM()
- CUSUM detector for time-varying categorical time series
-
pairedbinCUSUM()
pairedbinCUSUM.runlength()
- Paired binary CUSUM and its run-length computation
-
arlCusum()
- Calculation of Average Run Length for discrete CUSUM schemes
-
find.kh()
- Determine the k and h values in a standard normal setting
-
findK()
- Find Reference Value
-
earsC()
- Surveillance for a count data time series using the EARS C1, C2 or C3 method and its extensions
-
farringtonFlexible()
- Surveillance for Univariate Count Time Series Using an Improved Farrington Method
-
stcd()
- Spatio-temporal cluster detection
-
sim.pointSource()
- Simulate Point-Source Epidemics
-
sim.seasonalNoise()
- Generation of Background Noise for Simulated Timeseries
-
sts_creation()
- Simulate Count Time Series with Outbreaks
-
refvalIdxByDate()
- Compute indices of reference value using Date class
-
backprojNP()
- Non-parametric back-projection of incidence cases to exposure cases using a known incubation time as in Becker et al (1991)
-
nowcast()
- Adjust a univariate time series of counts for observed but-not-yet-reported events
-
bodaDelay()
- Bayesian Outbreak Detection in the Presence of Reporting Delays
-
sts_observation()
- Create an
sts
object with a given observation date
-
hhh4()
- Fitting HHH Models with Random Effects and Neighbourhood Structure
-
W_powerlaw()
W_np()
- Power-Law and Nonparametric Neighbourhood Weights for
hhh4
-Models
-
getNEweights()
coefW()
- Extract Neighbourhood Weights from a Fitted
hhh4
Model
-
print(<hhh4>)
summary(<hhh4>)
coef(<hhh4>)
fixef(<hhh4>)
ranef(<hhh4>)
coeflist(<hhh4>)
formula(<hhh4>)
nobs(<hhh4>)
logLik(<hhh4>)
vcov(<hhh4>)
confint(<hhh4>)
residuals(<hhh4>)
- Print, Summary and other Standard Methods for
"hhh4"
Objects
-
plot(<hhh4>)
plotHHH4_fitted()
plotHHH4_fitted1()
plotHHH4_season()
getMaxEV_season()
plotHHH4_maxEV()
getMaxEV()
plotHHH4_maps()
plotHHH4_ri()
plotHHH4_neweights()
- Plots for Fitted
hhh4
-models
-
predict(<hhh4>)
- Predictions from a
hhh4
Model
-
simulate(<hhh4>)
- Simulate
"hhh4"
Count Time Series
-
plot(<hhh4sims>)
aggregate(<hhh4sims>)
as.hhh4simslist()
plot(<hhh4simslist>)
aggregate(<hhh4simslist>)
plotHHH4sims_size()
plotHHH4sims_time()
plotHHH4sims_fan()
- Plot Simulations from
"hhh4"
Models
-
scores(<hhh4sims>)
scores(<hhh4simslist>)
- Proper Scoring Rules for Simulations from
hhh4
Models
-
update(<hhh4>)
update
a fitted"hhh4"
model
-
oneStepAhead()
quantile(<oneStepAhead>)
confint(<oneStepAhead>)
plot(<oneStepAhead>)
scores(<oneStepAhead>)
calibrationTest(<oneStepAhead>)
pit(<oneStepAhead>)
scores(<hhh4>)
calibrationTest(<hhh4>)
pit(<hhh4>)
- Predictive Model Assessment for
hhh4
Models
-
addSeason2formula()
- Add Harmonics to an Existing Formula
-
calibrationTest()
- Calibration Tests for Poisson or Negative Binomial Predictions
-
makeControl()
- Generate
control
Settings for anhhh4
Model
-
as.epidataCS()
print(<epidataCS>)
nobs(<epidataCS>)
head(<epidataCS>)
tail(<epidataCS>)
`[`(<epidataCS>)
subset(<epidataCS>)
marks(<epidataCS>)
summary(<epidataCS>)
print(<summary.epidataCS>)
as.stepfun(<epidataCS>)
getSourceDists()
- Continuous Space-Time Marked Point Patterns with Grid-Based Covariates
-
epidataCS2sts()
as.epidata(<epidataCS>)
- Conversion (aggregation) of
"epidataCS"
to"epidata"
or"sts"
-
animate(<epidataCS>)
- Spatio-Temporal Animation of a Continuous-Time Continuous-Space Epidemic
-
permute.epidataCS()
- Randomly Permute Time Points or Locations of
"epidataCS"
-
plot(<epidataCS>)
epidataCSplot_time()
epidataCSplot_space()
- Plotting the Events of an Epidemic over Time and Space
-
update(<epidataCS>)
- Update method for
"epidataCS"
-
glm_epidataCS()
- Fit an Endemic-Only
twinstim
as a Poisson-glm
-
untie()
- Randomly Break Ties in Data
-
R0()
simpleR0()
- Computes reproduction numbers from fitted models
-
residuals(<twinSIR>)
residuals(<twinstim>)
residuals(<simEpidataCS>)
- Extract Cox-Snell-like Residuals of a Fitted Point Process
-
twinstim()
- Fit a Two-Component Spatio-Temporal Point Process Model
-
epitest()
coef(<epitest>)
plot(<epitest>)
- Permutation Test for Space-Time Interaction in
"twinstim"
-
siaf.constant()
siaf.step()
siaf.gaussian()
siaf.exponential()
siaf.powerlaw()
siaf.powerlaw1()
siaf.powerlawL()
siaf.student()
tiaf.constant()
tiaf.step()
tiaf.exponential()
- Temporal and Spatial Interaction Functions for
twinstim
-
iafplot()
- Plot the Spatial or Temporal Interaction Function of a
twimstim
-
intensityplot(<twinstim>)
intensityplot(<simEpidataCS>)
intensity.twinstim()
- Plotting Intensities of Infection over Time or Space
-
print(<twinstim>)
summary(<twinstim>)
coeflist(<twinstim>)
vcov(<twinstim>)
logLik(<twinstim>)
nobs(<twinstim>)
print(<summary.twinstim>)
toLatex(<summary.twinstim>)
xtable(<summary.twinstim>)
- Print, Summary and Extraction Methods for
"twinstim"
Objects
-
plot(<twinstim>)
- Plot methods for fitted
twinstim
's
-
profile(<twinstim>)
- Profile Likelihood Computation and Confidence Intervals for
twinstim
objects
-
siaf()
- Spatial Interaction Function Objects
-
simEndemicEvents()
- Quick Simulation from an Endemic-Only
twinstim
-
simEpidataCS()
simulate(<twinstim>)
- Simulation of a Self-Exciting Spatio-Temporal Point Process
-
stepComponent()
add1(<twinstim>)
drop1(<twinstim>)
- Stepwise Model Selection by AIC
-
tiaf()
- Temporal Interaction Function Objects
-
update(<twinstim>)
update
-method for"twinstim"
-
knox()
plot(<knox>)
- Knox Test for Space-Time Interaction
-
stKtest()
plot(<stKtest>)
- Diggle et al (1995) K-function test for space-time clustering
-
checkResidualProcess()
- Check the residual process of a fitted
twinSIR
ortwinstim
-
as.epidata()
print(<epidata>)
`[`(<epidata>)
update(<epidata>)
- Continuous-Time SIR Event History of a Fixed Population
-
animate(<summary.epidata>)
animate(<epidata>)
- Spatio-Temporal Animation of an Epidemic
-
intersperse()
- Impute Blocks for Extra Stops in
"epidata"
Objects
-
plot(<summary.epidata>)
plot(<epidata>)
stateplot()
- Plotting the Evolution of an Epidemic
-
summary(<epidata>)
print(<summary.epidata>)
- Summarizing an Epidemic
-
residuals(<twinSIR>)
residuals(<twinstim>)
residuals(<simEpidataCS>)
- Extract Cox-Snell-like Residuals of a Fitted Point Process
-
twinSIR()
- Fit an Additive-Multiplicative Intensity Model for SIR Data
-
plot(<twinSIR>)
intensityplot(<twinSIR>)
intensityplot(<simEpidata>)
- Plotting Paths of Infection Intensities for
twinSIR
Models
-
print(<twinSIR>)
summary(<twinSIR>)
AIC(<twinSIR>)
extractAIC(<twinSIR>)
vcov(<twinSIR>)
logLik(<twinSIR>)
print(<summary.twinSIR>)
- Print, Summary and Extraction Methods for
"twinSIR"
Objects
-
profile(<twinSIR>)
- Profile Likelihood Computation and Confidence Intervals
-
simEpidata()
simulate(<twinSIR>)
- Simulation of Epidemic Data
-
checkResidualProcess()
- Check the residual process of a fitted
twinSIR
ortwinstim
-
MMRcoverageDE
- MMR coverage levels in the 16 states of Germany
-
abattoir
- Abattoir Data
-
campyDE
- Campylobacteriosis and Absolute Humidity in Germany 2002-2011
-
deleval
- Surgical Failures Data
-
fluBYBW
- Influenza in Southern Germany
-
hagelloch
- 1861 Measles Epidemic in the City of Hagelloch, Germany
-
hepatitisA
- Hepatitis A in Germany
-
husO104Hosp
- Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011
-
imdepi
- Occurrence of Invasive Meningococcal Disease in Germany
-
imdepifit
- Example
twinstim
Fit for theimdepi
Data
-
influMen
- Influenza and meningococcal infections in Germany, 2001-2006
-
m1
- RKI SurvStat Data
-
measles.weser
measlesWeserEms
- Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002
-
measlesDE
- Measles in the 16 states of Germany
-
meningo.age
- Meningococcal infections in France 1985-1997
-
momo
- Danish 1994-2008 all-cause mortality data for eight age groups
-
rotaBB
- Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categories
-
salmAllOnset
- Salmonella cases in Germany 2001-2014 by data of symptoms onset
-
salmHospitalized
- Hospitalized Salmonella cases in Germany 2004-2014
-
salmNewport
- Salmonella Newport cases in Germany 2004-2013
-
salmonella.agona
- Salmonella Agona cases in the UK 1990-1995
-
shadar
- Salmonella Hadar cases in Germany 2001-2006
-
stsNewport
- Salmonella Newport cases in Germany 2001-2015
-
animate()
- Generic animation of spatio-temporal objects
-
intensityplot()
- Plot Paths of Point Process Intensities
-
ks.plot.unif()
- Plot the ECDF of a uniform sample with Kolmogorov-Smirnov bounds
-
fanplot()
- Fan Plot of Forecast Distributions
-
addFormattedXAxis()
- Formatted Time Axis for
"sts"
Objects
-
layout.labels()
layout.scalebar()
- Layout Items for
spplot
-
pit()
- Non-Randomized Version of the PIT Histogram (for Count Data)
-
magic.dim()
- Compute Suitable k1 x k2 Layout for Plotting
-
discpoly()
- Polygonal Approximation of a Disc/Circle
-
poly2adjmat()
- Derive Adjacency Structure of
"SpatialPolygons"
-
polyAtBorder()
- Indicate Polygons at the Border
-
intersectPolyCircle()
- Intersection of a Polygonal and a Circular Domain
-
unionSpatialPolygons()
- Compute the Unary Union of
"SpatialPolygons"
-
marks
- Import from package spatstat.geom
-
multiplicity
- Import from package spatstat.geom
-
multiplicity(<Spatial>)
- Count Number of Instances of Points
-
nbOrder()
- Determine Neighbourhood Order Matrix from Binary Adjacency Matrix
-
zetaweights()
- Power-Law Weights According to Neighbourhood Order
-
all.equal(<twinstim>)
all.equal(<hhh4>)
- Test if Two Model Fits are (Nearly) Equal
-
formatDate()
- Convert Dates to Character (Including Quarter Strings)
-
formatPval()
- Pretty p-Value Formatting
-
bestCombination()
- Partition of a number into two factors
-
primeFactors()
- Prime Number Factorization
-
clapply()
- Conditional
lapply
-
plapply()
- Verbose and Parallel
lapply
-
coeflist()
- List Coefficients by Model Component
-
isoWeekYear()
- Find ISO Week and Year of Date Objects
-
permutationTest()
- Monte Carlo Permutation Test for Paired Individual Scores
-
surveillance.options()
reset.surveillance.options()
- Options of the surveillance Package
-
anscombe.residuals()
- Compute Anscombe Residuals