Package index
-
surveillance-packagesurveillance - surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena
-
disProg2sts()sts2disProg() - Convert disProg object to sts and vice versa
-
linelist2sts() - Convert Dates of Individual Case Reports into a Time Series of Counts
-
sts() - Class
"sts"– surveillance time series
-
aggregate(<sts>) - Aggregate an
"sts"Object Over Time or Across Units
-
stsBP-classcoerce,sts,stsBP-method - Class "stsBP" – a class inheriting from class
stswhich allows the user to store the results of back-projecting or nowcasting surveillance time series
-
stsNC-classreportingTrianglereportingTriangle,stsNC-methoddelayCDFdelayCDF,stsNC-methodscorescore,stsNC-methodpredintpredint,stsNC-methodcoerce,sts,stsNC-method - Class "stsNC" – a class inheriting from class
stswhich allows the user to store the results of back-projecting surveillance time series
-
animate_nowcasts() - Animate a Sequence of Nowcasts
-
alarmsalarms<-upperboundupperbound<-controlcontrol<-epochepoch<-observedobserved<-populationpopulation<-multinomialTSmultinomialTS<-neighbourhoodneighbourhood<- - Generic Functions to Access
"sts"Slots
-
`[`(<sts>) - Subsetting
"sts"Objects
-
animate(<sts>) - Animated Maps and Time Series of Disease Counts or Incidence
-
autoplot.sts() - Time-Series Plots for
"sts"Objects Using ggplot2
-
tidy.sts() - Convert an
"sts"Object to a Data Frame in Long (Tidy) Format
-
plot(<sts>,<missing>) - Plot Methods for Surveillance Time-Series Objects
-
stsplot_space() - Map of Disease Counts/Incidence accumulated over a Given Period
-
stsplot_time()stsplot_time1()stsplot_alarm() - Time-Series Plots for
"sts"Objects
-
toLatex(<sts>) toLatex-Method for"sts"Objects
-
algo.bayesLatestTimepoint()algo.bayes()algo.bayes1()algo.bayes2()algo.bayes3() - The Bayes System
-
algo.call() - Query Transmission to Specified Surveillance Algorithm
-
algo.cdcLatestTimepoint()algo.cdc() - The CDC Algorithm
-
algo.compare() - Comparison of Specified Surveillance Systems using Quality Values
-
algo.cusum() - CUSUM method
-
algo.farrington()farrington() - Surveillance for Count Time Series Using the Classic Farrington Method
-
algo.farrington.assign.weights() - Assign weights to base counts
-
algo.farrington.fitGLM()algo.farrington.fitGLM.fast()algo.farrington.fitGLM.populationOffset() - Fit Poisson GLM of the Farrington procedure for a single time point
-
algo.farrington.threshold() - Compute prediction interval for a new observation
-
algo.glrnb()algo.glrpois() - Count Data Regression Charts
-
algo.hmm() - Hidden Markov Model (HMM) method
-
algo.outbreakP() - Semiparametric surveillance of outbreaks
-
algo.quality() - Computation of Quality Values for a Surveillance System Result
-
algo.rkiLatestTimepoint()algo.rki()algo.rki1()algo.rki2()algo.rki3() - The system used at the RKI
-
algo.rogerson() - Modified CUSUM method as proposed by Rogerson and Yamada (2004)
-
algo.summary() - Summary Table Generation for Several Disease Chains
-
print(<algoQV>) - Print Quality Value Object
-
wrap.algo()bayes()rki()cusum()glrpois()glrnb()outbreakP() - Multivariate Surveillance through independent univariate algorithms
-
boda() - Bayesian Outbreak Detection Algorithm (BODA)
-
LRCUSUM.runlength() - Run length computation of a CUSUM detector
-
categoricalCUSUM() - CUSUM detector for time-varying categorical time series
-
pairedbinCUSUM()pairedbinCUSUM.runlength() - Paired binary CUSUM and its run-length computation
-
arlCusum() - Calculation of Average Run Length for discrete CUSUM schemes
-
find.kh() - Determine the k and h values in a standard normal setting
-
findK() - Find Reference Value
-
earsC() - Surveillance for a count data time series using the EARS C1, C2 or C3 method and its extensions
-
farringtonFlexible() - Surveillance for Univariate Count Time Series Using an Improved Farrington Method
-
stcd() - Spatio-temporal cluster detection
-
sim.pointSource() - Simulate Point-Source Epidemics
-
sim.seasonalNoise() - Generation of Background Noise for Simulated Timeseries
-
sts_creation() - Simulate Count Time Series with Outbreaks
-
refvalIdxByDate() - Compute indices of reference value using Date class
-
backprojNP() - Non-parametric back-projection of incidence cases to exposure cases using a known incubation time as in Becker et al (1991)
-
nowcast() - Adjust a univariate time series of counts for observed but-not-yet-reported events
-
bodaDelay() - Bayesian Outbreak Detection in the Presence of Reporting Delays
-
sts_observation() - Create an
stsobject with a given observation date
-
hhh4() - Fitting HHH Models with Random Effects and Neighbourhood Structure
-
W_powerlaw()W_np() - Power-Law and Nonparametric Neighbourhood Weights for
hhh4-Models
-
getNEweights()coefW() - Extract Neighbourhood Weights from a Fitted
hhh4Model
-
print(<hhh4>)summary(<hhh4>)coef(<hhh4>)fixef(<hhh4>)ranef(<hhh4>)coeflist(<hhh4>)formula(<hhh4>)nobs(<hhh4>)logLik(<hhh4>)vcov(<hhh4>)confint(<hhh4>)residuals(<hhh4>) - Print, Summary and other Standard Methods for
"hhh4"Objects
-
plot(<hhh4>)plotHHH4_fitted()plotHHH4_fitted1()plotHHH4_season()getMaxEV_season()plotHHH4_maxEV()getMaxEV()plotHHH4_maps()plotHHH4_ri()plotHHH4_neweights() - Plots for Fitted
hhh4-models
-
predict(<hhh4>) - Predictions from a
hhh4Model
-
simulate(<hhh4>) - Simulate
"hhh4"Count Time Series
-
plot(<hhh4sims>)aggregate(<hhh4sims>)as.hhh4simslist()plot(<hhh4simslist>)aggregate(<hhh4simslist>)plotHHH4sims_size()plotHHH4sims_time()plotHHH4sims_fan() - Plot Simulations from
"hhh4"Models
-
scores(<hhh4sims>)scores(<hhh4simslist>) - Proper Scoring Rules for Simulations from
hhh4Models
-
update(<hhh4>) updatea fitted"hhh4"model
-
oneStepAhead()quantile(<oneStepAhead>)confint(<oneStepAhead>)plot(<oneStepAhead>)scores(<oneStepAhead>)calibrationTest(<oneStepAhead>)pit(<oneStepAhead>)scores(<hhh4>)calibrationTest(<hhh4>)pit(<hhh4>) - Predictive Model Assessment for
hhh4Models
-
addSeason2formula() - Add Harmonics to an Existing Formula
-
calibrationTest() - Calibration Tests for Poisson or Negative Binomial Predictions
-
makeControl() - Generate
controlSettings for anhhh4Model
-
as.epidataCS()print(<epidataCS>)nobs(<epidataCS>)head(<epidataCS>)tail(<epidataCS>)`[`(<epidataCS>)subset(<epidataCS>)marks(<epidataCS>)summary(<epidataCS>)print(<summary.epidataCS>)as.stepfun(<epidataCS>)getSourceDists() - Continuous Space-Time Marked Point Patterns with Grid-Based Covariates
-
epidataCS2sts()as.epidata(<epidataCS>) - Conversion (aggregation) of
"epidataCS"to"epidata"or"sts"
-
animate(<epidataCS>) - Spatio-Temporal Animation of a Continuous-Time Continuous-Space Epidemic
-
permute.epidataCS() - Randomly Permute Time Points or Locations of
"epidataCS"
-
plot(<epidataCS>)epidataCSplot_time()epidataCSplot_space() - Plotting the Events of an Epidemic over Time and Space
-
update(<epidataCS>) - Update method for
"epidataCS"
-
glm_epidataCS() - Fit an Endemic-Only
twinstimas a Poisson-glm
-
untie() - Randomly Break Ties in Data
-
R0()simpleR0() - Computes reproduction numbers from fitted models
-
residuals(<twinSIR>)residuals(<twinstim>)residuals(<simEpidataCS>) - Extract Cox-Snell-like Residuals of a Fitted Point Process
-
twinstim() - Fit a Two-Component Spatio-Temporal Point Process Model
-
epitest()coef(<epitest>)plot(<epitest>) - Permutation Test for Space-Time Interaction in
"twinstim"
-
siaf.constant()siaf.step()siaf.gaussian()siaf.exponential()siaf.powerlaw()siaf.powerlaw1()siaf.powerlawL()siaf.student()tiaf.constant()tiaf.step()tiaf.exponential() - Temporal and Spatial Interaction Functions for
twinstim
-
iafplot() - Plot the Spatial or Temporal Interaction Function of a
twimstim
-
intensityplot(<twinstim>)intensityplot(<simEpidataCS>)intensity.twinstim() - Plotting Intensities of Infection over Time or Space
-
print(<twinstim>)summary(<twinstim>)coeflist(<twinstim>)vcov(<twinstim>)logLik(<twinstim>)nobs(<twinstim>)print(<summary.twinstim>)toLatex(<summary.twinstim>)xtable(<summary.twinstim>) - Print, Summary and Extraction Methods for
"twinstim"Objects
-
plot(<twinstim>) - Plot methods for fitted
twinstim's
-
profile(<twinstim>) - Profile Likelihood Computation and Confidence Intervals for
twinstimobjects
-
siaf() - Spatial Interaction Function Objects
-
simEndemicEvents() - Quick Simulation from an Endemic-Only
twinstim
-
simEpidataCS()simulate(<twinstim>) - Simulation of a Self-Exciting Spatio-Temporal Point Process
-
stepComponent()add1(<twinstim>)drop1(<twinstim>) - Stepwise Model Selection by AIC
-
tiaf() - Temporal Interaction Function Objects
-
update(<twinstim>) update-method for"twinstim"
-
knox()plot(<knox>) - Knox Test for Space-Time Interaction
-
stKtest()plot(<stKtest>) - Diggle et al (1995) K-function test for space-time clustering
-
checkResidualProcess() - Check the residual process of a fitted
twinSIRortwinstim
-
as.epidata()print(<epidata>)`[`(<epidata>)update(<epidata>) - Continuous-Time SIR Event History of a Fixed Population
-
animate(<summary.epidata>)animate(<epidata>) - Spatio-Temporal Animation of an Epidemic
-
intersperse() - Impute Blocks for Extra Stops in
"epidata"Objects
-
plot(<summary.epidata>)plot(<epidata>)stateplot() - Plotting the Evolution of an Epidemic
-
summary(<epidata>)print(<summary.epidata>) - Summarizing an Epidemic
-
residuals(<twinSIR>)residuals(<twinstim>)residuals(<simEpidataCS>) - Extract Cox-Snell-like Residuals of a Fitted Point Process
-
twinSIR() - Fit an Additive-Multiplicative Intensity Model for SIR Data
-
plot(<twinSIR>)intensityplot(<twinSIR>)intensityplot(<simEpidata>) - Plotting Paths of Infection Intensities for
twinSIRModels
-
print(<twinSIR>)summary(<twinSIR>)AIC(<twinSIR>)extractAIC(<twinSIR>)vcov(<twinSIR>)logLik(<twinSIR>)print(<summary.twinSIR>) - Print, Summary and Extraction Methods for
"twinSIR"Objects
-
profile(<twinSIR>) - Profile Likelihood Computation and Confidence Intervals
-
simEpidata()simulate(<twinSIR>) - Simulation of Epidemic Data
-
checkResidualProcess() - Check the residual process of a fitted
twinSIRortwinstim
-
MMRcoverageDE - MMR coverage levels in the 16 states of Germany
-
abattoir - Abattoir Data
-
campyDE - Campylobacteriosis and Absolute Humidity in Germany 2002-2011
-
deleval - Surgical Failures Data
-
fluBYBW - Influenza in Southern Germany
-
hagelloch - 1861 Measles Epidemic in the City of Hagelloch, Germany
-
hepatitisA - Hepatitis A in Germany
-
husO104Hosp - Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011
-
imdepi - Occurrence of Invasive Meningococcal Disease in Germany
-
imdepifit - Example
twinstimFit for theimdepiData
-
influMen - Influenza and meningococcal infections in Germany, 2001-2006
-
m1 - RKI SurvStat Data
-
measles.wesermeaslesWeserEms - Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002
-
measlesDE - Measles in the 16 states of Germany
-
meningo.age - Meningococcal infections in France 1985-1997
-
momo - Danish 1994-2008 all-cause mortality data for eight age groups
-
rotaBB - Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categories
-
salmAllOnset - Salmonella cases in Germany 2001-2014 by data of symptoms onset
-
salmHospitalized - Hospitalized Salmonella cases in Germany 2004-2014
-
salmNewport - Salmonella Newport cases in Germany 2004-2013
-
salmonella.agona - Salmonella Agona cases in the UK 1990-1995
-
shadar - Salmonella Hadar cases in Germany 2001-2006
-
stsNewport - Salmonella Newport cases in Germany 2001-2015
-
animate() - Generic animation of spatio-temporal objects
-
intensityplot() - Plot Paths of Point Process Intensities
-
ks.plot.unif() - Plot the ECDF of a uniform sample with Kolmogorov-Smirnov bounds
-
fanplot() - Fan Plot of Forecast Distributions
-
addFormattedXAxis() - Formatted Time Axis for
"sts"Objects
-
layout.labels()layout.scalebar() - Layout Items for
spplot
-
pit() - Non-Randomized Version of the PIT Histogram (for Count Data)
-
magic.dim() - Compute Suitable k1 x k2 Layout for Plotting
-
discpoly() - Polygonal Approximation of a Disc/Circle
-
poly2adjmat() - Derive Adjacency Structure of
"SpatialPolygons"
-
polyAtBorder() - Indicate Polygons at the Border
-
intersectPolyCircle() - Intersection of a Polygonal and a Circular Domain
-
unionSpatialPolygons() - Compute the Unary Union of
"SpatialPolygons"
-
marks - Import from package spatstat.geom
-
multiplicity - Import from package spatstat.geom
-
multiplicity(<Spatial>) - Count Number of Instances of Points
-
nbOrder() - Determine Neighbourhood Order Matrix from Binary Adjacency Matrix
-
zetaweights() - Power-Law Weights According to Neighbourhood Order
-
all.equal(<twinstim>)all.equal(<hhh4>) - Test if Two Model Fits are (Nearly) Equal
-
formatDate() - Convert Dates to Character (Including Quarter Strings)
-
formatPval() - Pretty p-Value Formatting
-
bestCombination() - Partition of a number into two factors
-
primeFactors() - Prime Number Factorization
-
clapply() - Conditional
lapply
-
plapply() - Verbose and Parallel
lapply
-
coeflist() - List Coefficients by Model Component
-
isoWeekYear() - Find ISO Week and Year of Date Objects
-
permutationTest() - Monte Carlo Permutation Test for Paired Individual Scores
-
surveillance.options()reset.surveillance.options() - Options of the surveillance Package
-
anscombe.residuals() - Compute Anscombe Residuals