CUSUM detector for time-varying categorical time series
categoricalCUSUM.Rd
Function to process sts
object by binomial, beta-binomial
or multinomial CUSUM as described by Höhle (2010).
Logistic, multinomial logistic, proportional
odds or Bradley-Terry regression models are used to specify in-control
and out-of-control parameters.
The implementation is illustrated in Salmon et al. (2016).
Arguments
- stsObj
Object of class
sts
containing the number of counts in each of the \(k\) categories of the response variable. Time varying number of counts \(n_t\) is found in slotpopulationFrac
.- control
Control object containing several items
range
Vector of length \(t_{max}\) with indices of the
observed
slot to monitor.h
Threshold to use for the monitoring. Once the CUSUM statistics is larger or equal to
h
we have an alarm.pi0
\((k-1) \times t_{max}\) in-control probability vector for all categories except the reference category.
mu1
\((k-1) \times t_{max}\) out-of-control probability vector for all categories except the reference category.
dfun
The probability mass function (PMF) or density used to compute the likelihood ratios of the CUSUM. In a negative binomial CUSUM this is
dnbinom
, in a binomial CUSUMdbinom
and in a multinomial CUSUMdmultinom
. The function must be able to handle the argumentsy
,size
,mu
andlog
. As a consequence, one in the case of, e.g, the beta-binomial distribution has to write a small wrapper function.ret
Return the necessary proportion to sound an alarm in the slot
upperbound
or just the value of the CUSUM statistic. Thus,ret
is one of the values inc("cases","value")
. Note: For the binomial PMF it is possible to compute this value explicitly, which is much faster than the numeric search otherwise conducted. In casedfun
just corresponds todbinom
just set the attributeisBinomialPMF
for thedfun
object.
- ...
Additional arguments to send to
dfun
.
Details
The function allows the monitoring of categorical time series as described by regression models for binomial, beta-binomial or multinomial data. The later includes e.g. multinomial logistic regression models, proportional odds models or Bradley-Terry models for paired comparisons. See the Höhle (2010) reference for further details about the methodology.
Once an alarm is found the CUSUM scheme is reset (to zero) and monitoring continues from there.
References
Höhle, M. (2010): Online Change-Point Detection in Categorical Time Series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag.
Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/jss.v070.i10
Examples
## IGNORE_RDIFF_BEGIN
have_GAMLSS <- require("gamlss")
## IGNORE_RDIFF_END
if (have_GAMLSS) {
###########################################################################
#Beta-binomial CUSUM for a small example containing the time-varying
#number of positive test out of a time-varying number of total
#test.
#######################################
#Load meat inspection data
data("abattoir")
#Use GAMLSS to fit beta-bin regression model
phase1 <- 1:(2*52)
phase2 <- (max(phase1)+1) : nrow(abattoir)
#Fit beta-binomial model using GAMLSS
abattoir.df <- as.data.frame(abattoir)
#Replace the observed and epoch column names to something more convenient
dict <- c("observed"="y", "epoch"="t", "population"="n")
replace <- dict[colnames(abattoir.df)]
colnames(abattoir.df)[!is.na(replace)] <- replace[!is.na(replace)]
m.bbin <- gamlss( cbind(y,n-y) ~ 1 + t +
+ sin(2*pi/52*t) + cos(2*pi/52*t) +
+ sin(4*pi/52*t) + cos(4*pi/52*t), sigma.formula=~1,
family=BB(sigma.link="log"),
data=abattoir.df[phase1,c("n","y","t")])
#CUSUM parameters
R <- 2 #detect a doubling of the odds for a test being positive
h <- 4 #threshold of the cusum
#Compute in-control and out of control mean
pi0 <- predict(m.bbin,newdata=abattoir.df[phase2,c("n","y","t")],type="response")
pi1 <- plogis(qlogis(pi0)+log(R))
#Create matrix with in control and out of control proportions.
#Categories are D=1 and D=0, where the latter is the reference category
pi0m <- rbind(pi0, 1-pi0)
pi1m <- rbind(pi1, 1-pi1)
######################################################################
# Use the multinomial surveillance function. To this end it is necessary
# to create a new abattoir object containing counts and proportion for
# each of the k=2 categories. For binomial data this appears a bit
# redundant, but generalizes easier to k>2 categories.
######################################################################
abattoir2 <- sts(epoch=1:nrow(abattoir), start=c(2006,1), freq=52,
observed=cbind(abattoir@observed, abattoir@populationFrac-abattoir@observed),
populationFrac=cbind(abattoir@populationFrac,abattoir@populationFrac),
state=matrix(0,nrow=nrow(abattoir),ncol=2),
multinomialTS=TRUE)
######################################################################
#Function to use as dfun in the categoricalCUSUM
#(just a wrapper to the dBB function). Note that from v 3.0-1 the
#first argument of dBB changed its name from "y" to "x"!
######################################################################
mydBB.cusum <- function(y, mu, sigma, size, log = FALSE) {
return(dBB(y[1,], mu = mu[1,], sigma = sigma, bd = size, log = log))
}
#Create control object for multinom cusum and use the categoricalCUSUM
#method
control <- list(range=phase2,h=h,pi0=pi0m, pi1=pi1m, ret="cases",
dfun=mydBB.cusum)
surv <- categoricalCUSUM(abattoir2, control=control,
sigma=exp(m.bbin$sigma.coef))
#Show results
plot(surv[,1],dx.upperbound=0)
lines(pi0,col="green")
lines(pi1,col="red")
#Index of the alarm
which.max(alarms(surv[,1]))
}