Find decision interval for given in-control ARL and reference value
findH.Rd
Function to find a decision interval h
* for given reference value k
and desired ARL \(\gamma\) so that the
average run length for a Poisson or Binomial CUSUM with in-control
parameter \(\theta_0\), reference value k
and is approximately \(\gamma\),
i.e. \(\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < \epsilon\),
or larger, i.e.
\(ARL(h^*) > \gamma \).
Arguments
- ARL0
desired in-control ARL \(\gamma\)
- theta0
in-control parameter \(\theta_0\)
- s
change to detect, see details
- distr
"poisson"
or"binomial"
- rel.tol
relative tolerance, i.e. the search for
h
* is stopped if \(\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < \)rel.tol
- digits
the reference value
k
and the decision intervalh
are rounded todigits
decimal places- roundK
passed to
findK
- FIR
if
TRUE
, the decision interval that leads to the desired ARL for a FIR CUSUM with head start \(\frac{\code{h}}{2}\) is returned- ...
further arguments for the distribution function, i.e. number of trials
n
for binomial cdf