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Monitoring routine collected public health data

Vast amount of data resulting from public health reporting
demands the development of automated algorithms for the
detection of abnormalities.

Aim: statistical analysis of routinely collected surveillance
data seen as multiple time series of counts

Issues such as seasonality, low number of disease cases and
presence of past outbreaks complicate the statistical analysis
of the time series.
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Overview of surveillance

Motivation

Free software for the use and development of surveillance
algorithms

Features

Visualization of surveillance data and algorithm output

Outbreak data from SurvStat@RKI and through simulation
from a hidden Markov model

Implementation of well-known surveillance algorithms

Functionality to compare classification performance

Time series models for (multivariate) surveillance data
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Example of surveillance data

Weekly number of adult male hepatitis A cases in the federal
state of Berlin during 2001-2006

During summer 2006 health authorities noticed an increased
amount of cases (Robert Koch Institute, 2006).

Hepatitis A in Berlin 2001−2006
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What is ?

R is a free software environment for statistical computing and
graphics available from http://www.r-project.org.

R runs on a wide variety of UNIX platforms, Windows and
Mac OS.

R is an implementation of the S language (programming
language oriented).

R produces high-quality graphics in a variety of formats,
including JPEG, PNG, EPS and PDF.

R can be combined with Sweave/odfWeave for automatic
report generation using LaTeX/OpenOffice.

M. Höhle 6/ 37

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org


Overview Basic surveillance Univariate surveillance Multivariate surveillance Summing Up References

What is surveillance? (1)

An open source R package for the visualization and monitoring
of count data time series in public health surveillance

Surveillance algorithms for univariate time series:

cdc – Stroup et al. (1989)
farrington – Farrington et al. (1996)
cusum – Rossi et al. (1999)
rogerson – Rogerson and Yamada (2004)
lrnb and glrnb – H. and Paul (2008)

Surveillance time series models:

hhh - Held et al. (2005); Paul et al. (2008)
twins - Held et al. (2006) (Experimental)
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What is surveillance? (2)

Comparison of surveillance algorithms using sensitivity,
specificity and its variants in simulations

History: Development started 2004 at the University of
Munich as part of the DFG/SFB386 research project
“Statistical methodology for infectious disease surveillance”

Motivation: Provide data structure and framework for
methodological developments

Spinoff: Tool for epidemiologists and others working in applied
infectious disease epidemiology

Availability: CRAN, current development version from

http://surveillance.r-forge.r-project.org/

Package is available under the GNU General Public License
(GPL) v. 2.0.
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Data structure: The sts class (1)

Possible multivariate surveillance time series
{yit ; t = 1, . . . , n, i = 1, . . . ,m} is represented using objects
of class sts (surveillance time series)

The sts class has the following form
setClass( "sts", representation(week = "numeric",

freq = "numeric",

start = "numeric",

observed = "matrix",

state = "matrix",

alarm = "matrix",

upperbound = "matrix",

neighbourhood= "matrix",

populationFrac= "matrix",

map = "SpatialPolygonsDataFrame",

control = "list"))

Old S3 class disProg objects can be converted to sts using
disProg2sts.
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Data structure: The sts class (2)

observed A n ×m matrix of counts representing yit

start A vector of length two containing the origin of the
time series as c(year, week).

freq A numeric specifying the period of the time series,
i.e. 52 for weekly data, 12 for monthly data, etc.

state A n ×m matrix of Booleans, if any specific time
points are known to contain outbreaks

alarm A n ×m matrix of Booleans containing the result of
applying a surveillance algorithm to the time series

upperbound A n ×m matrix containing the number of cases
which would result in an alarm (specific
interpretation is algorithm dependent)

control List with control arguments used for the surveillance
algorithm
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Data I/O

To import data into R one can use read.table/read.csv,
package foreign (SAS, SPSS, Stata, Systat, dBase) or the
RODBC database interface (Acess, Excel, SQL databases).

An sts object is then created from the resulting matrix of
counts.

R> ha.counts <- as.matrix(read.csv("ha.csv"))

R> ha <- new("sts", week = 1:nrow(ha.counts), start = c(2001,

+ 1), freq = 52, observed = ha.counts, state = matrix(0,

+ nrow(ha.counts), ncol(ha.counts)))

All plotting, accessing, aggregating and application of
surveillance algorithms works on sts objects
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Accessing sts objects (1)

Printing provides basic information about the time series:

R> print(ha)

-- An object of class sts --

freq: 52

start: 2001 1

dim(observed): 290 12

Head of observed:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

map:

[1] chwi frkr lich mahe mitt neuk pank rein scho span trko zehl

12 Levels: chwi frkr lich mahe mitt neuk pank rein scho span ... zehl

head of neighbourhood:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

chwi NA NA NA NA NA NA NA NA NA NA NA NA
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Accessing sts objects (2)

Matrix like accessing such as ha[1:52,] or ha[,"mitt"]
results in sts objects containing the respective sub time series

Functions such as dim, nrow and ncol are also defined:
R> dim(ha)

[1] 290 12

The time series can be aggregated temporally and spatially:
R> dim(aggregate(ha, by = "unit"))

[1] 290 1

R> dim(aggregate(ha, by = "time"))

[1] 1 12

Currently, the slots of sts objects are accessed directly
R> head(ha@observed, n = 1)

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0
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Accessing sts objects (3)

Aggregation can also be of subsets.

Example: Aggregate weekly data into 4 week blocks
(corresponding to 13 observations per year)
R> ha4 <- aggregate(ha[, c("pank", "mitt", "frkr", "scho",

+ "chwi", "neuk")], nfreq = 13)

R> dim(ha4)

[1] 73 6
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Visualizing sts objects (1)

The plot function provides an interface to several visual
representations controlled by the type argument.

R> plot(ha4, type = observed ~ time)
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Visualizing sts objects (2)

R> plot(ha4, type = observed ~ time | unit)
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Visualizing sts objects (3)
Using the maptools package shapefiles provide map visualizations

R> plot(ha4, type = observed ~ 1 | unit)
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Visualizing sts objects (4)

Using type = observed~1|time*unit one would have
created an animation of pictures for each time index

Plotting functionality is customizable as in R-graphics
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Farrington algorithm (1) – model
Predict value yt0 at time t0 = (tm

0 , ty
0 ) using a set of reference

values from window of size 2w + 1 up to b years back:

R(w , b) =

 b⋃
i=1

w⋃
j=−w

ytm
0 +j :ty

0−i


Fit overdispersed Poisson GLM to the b(2w + 1) reference
values where E(yt) = µt , log µt = α + βt and Var(yt) = φµt .
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M. Höhle 19/ 37



Overview Basic surveillance Univariate surveillance Multivariate surveillance Summing Up References

Farrington algorithm (2) – outbreak detection

Predict and compare:

An approximate (1− α)% prediction interval for yt0 based on
the GLM has upper limit U = µ̂t0 + z1−α

2
·
√

Var(yt0 − µ̂t0)

If observed yt0 is greater than U, then flag t0 as outbreak

Remarks:

Linear trend is only included if significant at 5% level, b ≥ 3
and no over-extrapolation occurs

Automatic correction for past outbreaks by computing
Anscombe residuals for reference values and re-fit GLM
assigning lower weights to values with large residuals

Low count protection – the algorithm raises an alarm only if
more than 5 cases in past 4 weeks
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Farrington algorithm in surveillance (1)

Function farrington takes an sts and a control object as
arguments

control is a list with the following components:

range Specifies the index of all timepoints in sts to
monitor.

b Number of years to go back in time
w Window size

reweight Boolean stating whether to perform reweight
step using Anscombe residuals

trend If TRUE a trend is included in first fit and kept in
case the conditions are met. Otherwise no trend.

alpha An approximate two-sided (1− α)% prediction
interval is calculated
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Farrington algorithm in surveillance (2)

R> cntrlFar <- list(range = 53:73, w = 2, b = 3, alpha = 0.01)

R> survha <- farrington(ha41, control = cntrlFar)

Surveillance using farrington(2,0,3)
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Farrington algorithm in surveillance (3)
Argument limit54=c(cases,weeks) specifies the low count
protection
Example using control$limit54=c(0,4):

Surveillance using farrington(2,0,3)
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Farrington algorithm in surveillance (4)
Argument powertrans in control indicates which power
transformation to use:

"2/3" skewness correction in low count scenario
"1/2" variance stabilizing square-root transformation
"none" no transformation
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Correcting for past outbreaks (1)

Problems arise when base-line counts contain outbreaks. A
reweighting procedure is used to downweight such observation.

Compute standardized Anscombe residuals for Poisson
distribution:

st =
rt

φ̂
√

1− htt

, where rt =
3(y

2
3
t − µ̂

2
3
t )

2µ̂
1
6
t

Define weights ωt as

ωt =

{
γ 1

s2
t

if st > 1

γ otherwise
,

where γ ensures
∑k

i=1 ωt = n.
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Correcting for past outbreaks (2)

Refit the GLM using the ωt weights, i.e.

Var(yt) =
φµt

ωt

Effect of weights is to downweight large positive outliers in
the data:
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CUSUM as Surveillance Algorithm (1)

A control chart known from statistical process control

Cumulative Sum (CUSUM)

In control situation X1, . . . ,Xn
iid∼ N(0, 1). Monitor shift to N(µ,1)

by
St = max(0,St−1 + Xt − k), t = 1, . . . , n

where S0 = 0 and k is the reference value. Raise alarm if St > h,
where h is called the decision interval.

CUSUMs are better to detect sustained shifts

Given h and k we can determine the average run length (ARL)
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CUSUM as Surveillance Algorithm (2)

CUSUM for count data Y1, . . . ,Yn
iid∼ Po(m) by transforming

data to normality (Rossi et al., 1999)

Xt =
Yt − 3m + 2

√
m · Yt

2
√

m

Risk-adjust the chart by letting m be time varying, e.g. as
output of a Poisson GLM model

log(mt) = α + βt +
S∑

s=1

(γs sin(ωst) + δs cos(ωst)),

where ωs = 2π
52 s are the Fourier frequencies.
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CUSUM as Surveillance Algorithm (3)

R> kh <- find.kh(ARLa = 500, ARLr = 7)

R> cntrlRossi <- list(range = 209:290, k = kh$k, h = kh$h,

+ trans = "rossi", m = NULL)

R> ha.cs <- cusum(aggregate(ha, by = "unit"), control = cntrlRossi)

Surveillance using cusum: rossi
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CUSUM as Surveillance Algorithm (3)

Simulation studies show: For low counts it is better to use
CUSUM directly on the counts instead of on transformed
residuals

Proposals for this setting implemented in surveillance are:

Function rogerson, which uses a reweighted Poisson
CUSUM (Rogerson and Yamada, 2004)
Function glrnb, which uses a likelihood ratio and generalized
likelihood ratio detector (H. and Paul, 2008)

More flexibility to model the time series and to tune the
detection algorithm → more work for each time series
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Towards multivariate surveillance (1)

A simple way to perform surveillance for a number of time
series is to monitor each independently
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Towards multivariate surveillance (2)

Results for current month (say August 2006) are easily
accessed for further report generation

R> control <- list(b = 3, w = 2, range = 53:73, alpha = 0.01,

+ limit54 = c(0, 1))

R> ha4.surv <- farrington(ha4, control = control)

R> sapply(c("observed", "upperbound", "alarm"), function(str) {

+ slot(ha4.surv, str)[nrow(ha4.surv), ]

+ })

observed upperbound alarm

pank 0 2.42 0

mitt 0 2.97 0

frkr 0 2.74 0

scho 1 2.42 0

chwi 0 2.23 0

neuk 2 1.40 1
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Towards multivariate surveillance (3)

An alarm plot gives an overview of alarms for the different
time series

Shaded regions indicate alarms for the current month

Surveillance using farrington(2,0,3)
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Summing Up

surveillance offers an visualization and modeling of
surveillance time series and an implementation of different
detection algorithms

A starting point to learn more about the package is H. (2007)

Functionality for comparing algorithms exists, but was not
shown in this talk

Current work is e.g. an adaption of the algorithms to the
binomial setting yt ∼ Bin(nt , πt)
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